
Bioelectrochemistry 147 (2022) 108162

Available online 19 May 2022
1567-5394/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Modeling and simulation of current-clamp electroporation 

Anthony Gurunian, David A. Dean * 

Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA   

A R T I C L E  I N F O   

Keywords: 
Electroporation 
Chronopotentiometry 
Smoluchowski 
Langevin 
Hopf Bifurcation 

A B S T R A C T   

Current-Clamp electroporation refers to the application of a constant current across a membrane which results in 
voltage fluctuations due to the creation of electropores. This method allows for the measurement of electropo-
ration across a long timescale (minutes) and facilitates the comparison between experimental and theoretical 
studies. Of particular interest is the claim in the literature that current-clamp electroporation results in the 
creation of a single pore. We simulated current-clamp electroporation using the Smoluchowski and Langevin 
equations and identified two possible mechanisms to explain the observed voltage fluctuations. The voltage 
fluctuations may be due to a single pore or a few pores growing and shrinking via a negative feedback mech-
anism or the opening and closing of pores in a larger population of pores. Our results suggest that current-clamp 
conditions do not necessarily result in the creation of a single pore. Additionally, we showed that the Langevin 
model is more accurate than the Smoluchowski model under conditions where there are only a few pores.   

1. Introduction 

Electroporation refers to the general phenomenon of the creation of 
transient pores in lipid membranes in response to an applied electric 
field. In the biomedical sciences, electroporation is used primarily for 
tumor ablation, drug delivery, and gene delivery [1]. Since the size of 
electropores is very small (nanometers), and the timescale of their cre-
ation and growth is very short (nanoseconds) [2], they are difficult to 
observe directly using microscopy. Recently, optical single-channel re-
cordings have been used to visualize electropores in droplet interface 
bilayers with a time resolution of 16 ms [3]. Indirect experimental 
methods probing membrane conductivity [4], molecular uptake [5,6], 
and gene expression [7] have often been used to gain a better under-
standing of electroporation. However, using these methods alone tells us 
little about the biophysical processes involved in electroporation. 

Continuum models and molecular dynamics simulations have been 
the two main approaches used to gain a better theoretical understanding 
of electroporation [8]. Although they represent two fundamentally 
different approaches, both show surprising qualitative agreement with 
respect to the mechanism of electroporation [8]. The continuum theory 
posits that in response to an applied electric field, pores are initially 
created as small, cylindrical, hydrophobic pores, and then are stabilized 
into larger, toroidal, hydrophilic pores [8]. The theoretical transition 
between hydrophobic pores and hydrophilic pores has also been 
observed in molecular dynamics simulations [8–10]. 

A popular continuum model, the Smoluchowski model, is a partial 
differential equation (PDE) which governs the distribution of pores with 
respect to their size and with respect to time. It has been used exten-
sively in the electroporation literature for modeling experimental sce-
narios involving short nanosecond to millisecond electrical pulses 
[11–15]. A limitation of the model is that it uses a large number of pa-
rameters, many of which cannot be measured experimentally [2,16]. 
Another limitation, which has not been mentioned in the literature, is 
the fact that it treats pores as a continuous pore density, when in reality 
pores exist at discrete radii. In this work we show that the Smoluchowski 
model creates an artificial smoothing which becomes more obvious at 
lower pore number. For this reason, we also use an analogous Langevin 
model and compare our results. In this work, the Langevin model refers 
to a system of stochastic differential equations (SDE), which governs the 
sizes of individual pores. The Langevin model uses a separate SDE for 
each pore, so it does not suffer from the same artificial smoothing as the 
Smoluchowski model, but a limitation is that it can become computa-
tionally expensive for scenarios involving many pores. 

In order to further validate results from models and simulations, 
comparisons with experimental data must also be made. In the past, 
good quantitative agreement has been shown between the continuum 
Smoluchowski electroporation model and experimental data of fluo-
rescent dye uptake during electroporation [5,6,14]. However, almost all 
experimental and computational studies have focused on the case of 
high applied electric field strength, in which case a large number of 
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pores are created [2,5,6,12–14,17,18]. Some experimental studies have 
shown that when artificial lipid bilayers are clamped at a low voltage, a 
single pore can be observed [3,4]. Others have claimed that the voltage 
fluctuations observed under current-clamp conditions also reflect the 
presence of a single electropore that fluctuates in size due to a negative 
feedback mechanism [19–25]. By clamping the current or voltage, and 
by having a single pore as opposed to a large population of pores, we 
greatly simplify the comparison between experimental and computa-
tional studies. In this work, we use the Smoluchowski model, and an 
analogous Langevin model to study electroporation under current-clamp 
conditions. We show that the voltage fluctuations observed under 
current-clamp conditions may either reflect a negative feedback mech-
anism involving a single pore, multiple pores, or a mechanism involving 
the creation and destruction of pores in a larger population of pores. 

2. Theory and methods 

2.1. Electroporation theory 

In continuum electroporation models, pores are fully characterized 
by their radius, which is in turn determined by the pore energy land-
scape (Fig. 1). The pore energy at a given radius is defined as the lesser of 
W(r) and U(r), the hydrophilic and hydrophobic pore energies respec-
tively. Since only hydrophilic pores are considered to be conducting [2], 
we will only consider the hydrophilic pore energy and assume pores are 
created with a minimum radius r*. In this work we adopt the pore energy 
model described in Smith [14], which is based off of earlier models 
[12,13,17,18,26] . 

W(r) = B
(r*

r

)b
+ 2πγr − Γeff δAl,p(r) −

∫ r

0

FmaxVm
2

1 + rh
r+rt

(1) 

In Eq. (1), the first term represents the energy due to the steric 
repulsion of lipid heads, the second term is the edge energy, the third 
term is the interfacial energy, and the last term is the electrical energy 
[27]. All parameter names and values are given in Table 1. The effective 
surface tension, Γeff , is given by 

Γeff
(
Al,p
)
= 2Γ’ −
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)2 (2) 

to account for the fact that the creation of pores results in a change of 
the total lipid area, Al,p, which results in the change of the overall surface 
tension [14,28]. 

The reduction of lipid area due to a single toroidal pore, δAl,p(r), is 

given as [14] 
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(3)  

where h is the membrane thickness. Note that under conditions where a 
single pore is created, the lipid area does not change significantly, so the 
effective surface tension can be treated as a constant. As the trans-
membrane voltage (Vm) changes during electroporation, the shape of the 
pore energy landscape is expected to change. At low voltages, a local 
minimum exists around rm = 1 nm, but disappears as the voltage in-
creases, leading to irreversible electroporation (Fig. 1). However, if a 
single pore is created under voltage-clamp conditions, the pore energy 
landscape is expected to be static. 

In this work we also adopt the pore conductance model described by 
Smith [14]. The pore resistance is given by 

Rp(r) =
h

σApHK
+

1
2σr

(4)  

where σ is the conductivity of the solution, Ap = πr2 is the pore area, H is 
the Hindrance factor, and K is the Partition factor. The Hindrance factor 
for spherical solutes is given by 

H(r) =
(

1 −
rs

r

) 6π
ft

(5)  

where rs is the solute radius and 
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9
4
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̅̅̅
2

√
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5
2
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+ a3 + a4λ+ a5λ2 + a6λ3 + a7λ4 (6)  

where λ = rs
r and the constants a1...a7 are included in Table 1. In this 

Fig. 1. Pore Energy Landscape r* = 0.65 nm, B = 2 × 10− 19 J, b = 2.5, γ = 0.8 
× 10− 11 J m− 1. 

Table 1 
All Parameter value names, values and sources. Parameters with multiple values 
are specified in the main text. Parameters with * chosen to match Fig. 2 of 
Naumowicz et al. [23].  

Parameter Value(s) Definition and source 

a 104, 105 (m− 2 s) Pore creation rate density 
β 15 kT, 90 kT Pore creation constant 
σ 1.2 S m− 1 Conductivity of electrolyte buffer (0.1 M 

KCl) [14] 
Am 9 × 10− 6 m2 Membrane area* [23] 
Cm 2.2 × 10− 2 F m− 2 Surface capacitance of the membrane* 
Rm 10 kΩ m2 Surface resistance of the membrane  

[29] 
h 5 nm Membrane thickness [14] 
D 10− 18, 7 × 10− 13 (m2 s− 1) Diffusion coefficient for pore radius 
γ 1.8 × 10− 11, 0.8 × 10− 11 

(J m− 1) 
Edge energy [18] 

Γ0 1 × 10− 5 J m− 2 Membrane tension [14] 
Γ’ 2 × 10− 2 J m− 2 Tension of hydrocarbon-water interface  

[14] 
Fmax 0.70 × 10− 9 N V− 2 Maximum electric force for Vm = 1 V  

[18] 
rh 0.97 × 10− 9 m Constant in eq. (1) [18] 
rt 0.31 × 10− 9 m Constant in eq. (1) [18] 
r* 0.65 × 10− 9 m Minimum hydrophilic pore radius [14] 
T 293 K Absolute Temperature [23] 
B 1.48 × 10− 19, 2 × 10− 19 

(J) 
Steric Repulsion Constant 

b 3.6, 2.5 Steric Repulsion Constant 
a1 − 1.2167 Coefficient in eq. (7) [14] 
a2 1.5336 Coefficient in eq. (7) [14] 
a3 − 22.5083 Coefficient in eq. (7) [14] 
a4 − 5.6117 Coefficient in eq. (7) [14] 
a5 − 0.3363 Coefficient in eq. (7) [14] 
a6 − 1.216 Coefficient in eq. (7) [14] 
a7 1.647 Coefficient in eq. (7) [14] 
rs 0.175 × 10− 9 m Potassium Radius [14] 
n 0.25 Pore relative entrance length [14]  
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work we only consider the potassium ion whose radius is listed in 
Table 1. The Partition factor for a trapezoidal pore is given by [30] 

K(r,Vm) =
eVm − 1

w0ew0 − nVm − nVm
w0 − nVm

eVm − w0ew0+nVm +nVm
w0+nVm

(7)  

where w0 is the Born energy for a toroidal pore given by [14] 

w0(r) = 5.3643
(zq)2

kT
r− 1.803 (8) 

The Hindrance and Partition factors are necessary to account for the 
fact that the conductivity inside the pore is different from the bulk 
conductivity. The Hindrance factor arises from the steric hindrance due 
to the finite size of the solute with respect to the pore, and the frictional 
resistance or drag which results from the interaction of the solute with 
the pore walls [14,31]. The Partition factor arises from considerations 
involving the energetic cost to place a charge inside a pore [14,30]. 

Consider the flux of pores with respect to their radii consisting of 
diffusion due to thermal fluctuations and drift due to the action of a 
generalized force, F = −

∂W(r)
∂r , which is the gradient of the pore energy. 

J = − D
∂n(r, t)

∂r
−

D
kT

n(r, t)
∂W(r)

∂r
(9) 

Eq. (9) is analogous to the drift–diffusion of a particle in a one- 
dimensional space. If Eq. (10) is combined with the equation of 
continuity, 

∂n(r, t)
∂t

= − ∇J (10) 

we recover the Smoluchowski equation (Eq. (11)). 
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)
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)
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)

(11) 

The Smoluchowski equation is a partial differential equation (PDE) 
which governs the evolution of pores. Note that n(r, t) is the pore density 
distribution such that there are n(r, t)dr pores with radii between r and 
r+dr at time t. Eq. (11) must be supplemented with an ordinary dif-
ferential equation (ODE) describing the dynamics of the transmembrane 
voltage. For planar lipid membranes under current-clamp conditions, we 
use the following equation and initial condition 

C
dVm

dt
= Iapp − Ip −

Vm

R
; Vm(t = 0) = 0 (12)  

where C dVm
dt is the capacitive current, Iapp = jAm is the applied constant 

current (j is the current density), Ip is the current through pores, and Vm
R is 

the leakage current. Note that C = CmAm and R = Rm
Am

. 
The total current through pores, Ip, is given by 

Ip =

∫ rmax

r*

n(r, t)
Vm

Rp(r)
dr (13)  

where rmax is the maximum radius considered in the model. 
While the Smoluchowski equation works well for cases with a large 

number of pores, it introduces an artificial smoothing when there are 
only a few pores. The Smoluchowski equation assumes a continuous 
pore density, when in reality, pores exist at discrete radii. For this 
reason, we also conduct simulations with the Langevin equation. In the 
limit of strong friction, the inertia term can be neglected, and the Lan-
gevin equation becomes 

ε dr
dt

= F(r)+ σξ(t) (14)  

where ε is the friction coefficient, F(r) = −
∂W(r)

∂r is the external force, and 
ξ(t) is the noise term. Using Einstein’s relation, we identify ε = 1

μ =
kT
D as 

the friction coefficient, and using the fluctuation–dissipation theorem, 

we identify σ =
̅̅̅̅̅̅̅̅̅̅̅
2kTε

√
= kT

̅̅̅
2
D

√

as the fluctuation amplitude [32]. After 
substituting terms and rearranging, we arrive at the equation 

dr
dt

= −
D
kT

∂W(r)
∂r

+
̅̅̅̅̅̅
2D

√
ξ(t) (15)  

where we simply take ξ(t) to be a gaussian white noise. This form of the 
Langevin equation is the stochastic analog of the Smoluchowski equa-
tion. By using the Langevin equation, we are able to uncover behavior 
that is hidden by the artificial smoothing of the Smoluchowski equation. 

2.2. Numerical methods 

To solve the Smoluchowski PDE, we adopt the numerical scheme 
described in Smith et al. [14,15]. Briefly, we use a method of lines (MOL) 
approach to solve the system involving the Smoluchowski PDE (Eq. 
(11)), and the ODE governing the transmembrane voltage (Eq. (12)). 
The spatial dimension of Eq. (11) is discretized as 

∂n(ri, t)
∂t

=
Ji− 1,i − Ji,i+1

(Δr)i
(16)  

where 
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−
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1 − e
(ΔE)i,j

kBT

+
nj

1 − e
− (ΔE)i,j

kB T

)

else

(17) 

is the discretized pore flux [14,15]. To describe the creation and 
destruction of pores we use the following boundary condition at.r = r* 

∂n(r*, t)
∂t

=
(J*,c − J*,d) − J*,*+1

(Δr)*
(18)  

where J*,c is the creation flux, 

J*,c = aAme
βVm 2
kB T (19)  

and J*,d = J*,*− 1 is the destruction flux which is obtained by using an 
imaginary node at r = r* − (Δr)* and setting the corresponding pore 
density to zero [14]. For the boundary at r = rmax, we use an absorbing 
boundary condition by setting the corresponding time derivative to zero. 
The resulting system of ordinary differential equations is solved using 
MATLABs ode15s solver. At each time step, the pore energies, total lipid 
area, effective surface tension, and total current through pores are 
computed, and the boundary conditions are enforced. The value for rmax 
was chosen to be high enough (0.1 mm) so that the pore density would 
be negligible near at r = rmax and so that there would be no artificial 
restrictions on pore growth. The spatial coordinate (pore radius) was 
discretized using a step size of Δr = 1pm from 0.65 nm to 3 nm. The step 
size was linearly increased in increments of 1pm until r = 10nm, after 
which the radius was increased logarithmically until rmax using 100 
nodes. 

For simulations using the Langevin Equation, we created a stochastic 
differential equation object for Eqs. (12) and (15) using MATLAB’s sde() 
function, and simulated using the simByEuler() function with a time- 
step of 1 µs. Pore creation and destruction was simulated in a way 
analogous to Eqs. (18) and (19). In particular, every millisecond, the 
number of pores created was computed using Eq. (19). Pores were 
“launched” by adding copies of Eq. (15) to the sde object with an initial 
condition of r*. Similarly, pores were destroyed by deleting copies of Eq. 
(15) from the sde object whenever a pore radius fell below a value of 
r* − 1pm. 
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3. Results 

We simulated current-clamp electroporation using the Smo-
luchowski equation, and tried to fit the experimental data from Fig. 2 of 
Naumowicz et al. [23] by adjusting the values of the diffusion coefficient 
D in Eq. (11), the pore creation parameters a and β, edge energy γ, and 
the steric repulsion constants B and b in Eq. (1). We identified two 
possible mechanisms which can explain the observed voltage 
fluctuations. 

First, the voltage fluctuations may be a result of a negative feedback 
mechanism as suggested in Naumowicz et al. [23]. In particular, as the 
transmembrane voltage increases, the local minimum in the pore energy 
landscape disappears (Fig. 1) leading to pore expansion, which in turn 
causes a drop in the voltage, at which point the local minimum reap-
pears and the pores begin to shrink. By using the parameter values a =
105, β = 15 kT, D = 10− 18, γ = 0.8 × 10− 11, B = 2 × 10− 19, and b = 2.5, 
we were able to achieve good fit with the experimental data. The 
transmembrane voltage and number of pores are shown as a function of 
time in Fig. 2 below. Videos of the spatiotemporal evolution of the pore 
density and the pore energy landscape are included in the Supplemen-
tary Material (S1). 

To study the system more closely, we considered the case where 
there is a single pore present by solving the system involving Eq. (12) 
and Eq. (15) without the noise term. The corresponding phase-plane 
portrait assuming the presence of a single pore is shown in Fig. 3. 
Videos of the transmembrane voltage response and the spatiotemporal 
evolution of the pore energy landscape are included in the Supplemen-
tary Material (S2). In Fig. 3 (top), we observed the same damped os-
cillations which appear in the experimental data, but we were not able to 
achieve a good fit with the data. The pore reached an equilibrium value 
of 16 nm at a stable fixed point corresponding to a local maximum in the 
free energy landscape. Notably, by changing the value of the applied 
current density from j = 1 mA m− 2 to j = 0.5 mA m− 2, a limit cycle 
appears, indicating the presence of a Hopf Bifurcation. 

We also simulated the system using the Langevin equation. This 
allowed us to look at the evolution of the radii of individual pores, and to 
avoid any unrealistic smoothing caused by the Smoluchowski equation. 
The transmembrane voltage, average pore radius, and selected pore 
radii are shown as a function of time in Fig. 4. Note how the voltage 

fluctuates for t > 20 s, in a way which is not noticeable in Fig. 2. This is 
due to current fluctuations caused by stochastic pore fluctuations. A 
comparison of the current through electropores predicted by the Smo-
luchowski and Langevin equations is shown in Fig. 5. 

Alternatively, the voltage fluctuations may be a result of the opening 
and closing of pores in a population of pores. In particular, as pores are 
created the transmembrane voltage drops, and as they reseal the voltage 
rises, resulting in voltage fluctuations. Eventually, the rate of pore cre-
ation and destruction balances and the system reaches equilibrium. By 
using the parameter values a = 104, β = 90 kT, D = 7 × 10− 13, γ = 1.8 ×
10− 11, B = 1.48 × 10− 19, and b = 3.6 in the Smoluchowski model, we 
were able to achieve good fit with the experimental data. The trans-
membrane voltage and number of pores are shown as a function of time 
in Fig. 6. Videos of the spatiotemporal evolution of the pore density and 
the pore energy landscape are included in the Supplementary Material 
(S3). We did not simulate this case using the Langevin equation due to 
the very high computational cost associated with simulating a large 
number of pores with a high diffusion coefficient. 

4. Discussion 

Using the Smoluchowski and Langevin models, we have shown two 
potential mechanisms that can account for the voltage oscillations 
during current-clamp electroporation. The oscillations are either due to 
the growth and shrinkage of pores via a negative feedback mechanism 
involving the transmembrane voltage, or they are due to the opening 
and closing of pores as the system reaches equilibrium. An important 
conclusion is that the voltage oscillations are not necessarily due to the 
presence of a single pore. While it is theoretically possible that a single 
pore can be created under current-clamp conditions, it cannot simply be 
assumed on the basis of the presence of voltage oscillations. Meanwhile, 
the voltage-clamp method has been shown to generate a single pore 

Fig. 2. (Smoluchowski model) Current-Clamp Electroporation (j = 1 mA m− 2). 
(Top) Transmembrane Voltage response and Exp. data from Naumowicz et al. 
[23] reproduced using the Engauge Digitizer Software [33]. (Bottom) Number 
of Pores as a function of time. 

Fig. 3. Phase Portraits of system from Fig. 2, assuming the presence of a single 
pore. Initial Condition: (Vm, r) = (0.01 V, 1 nm). Decreasing the current density 
from j = 1 mA m− 2 to j = 0.5 mA m− 2 reveals the presence of a Hopf 
Bifurcation. 
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based on the abruptness and magnitude of conductance transitions [4], 
and visual observation [3]. Therefore, we recommend using the voltage- 
clamp method to reliably generate a single pore. 

For the case involving a single pore (Fig. 3), we observed damped 
voltage oscillations similar to the experimental data, but we were not 
able to achieve a good fit using our model. Interestingly, the pore in 
Fig. 3 (top) reached an equilibrium radius of 16 nm, which is much 
larger than the 1 nm pores created under voltage-clamp conditions [4]. 
If a stable 16 nm pore is in fact generated under current-clamp condi-
tions, this would make it ideal for delivery large molecules like plasmid 
DNA. We also observed that the system exhibits a Hopf bifurcation. A 
Hopf bifurcation is a feature of certain dynamical systems characterized 
by a sudden change in its qualitative behavior and the appearance of 
oscillations. In particular, it occurs when, as a parameter value is 
smoothly changed, a pair of complex conjugate eigenvalues cross the 
imaginary axis of the complex plane, resulting in the appearance of an 
elliptical limit cycle in phase space [34]. However, no continuously 
oscillating waveform has been reported in the experimental data [23]. 
Instead, we observe that the voltage oscillations are always damped as 
the transmembrane voltage reaches a steady-state value. This is another 
indication that more than a single pore is created under current-clamp 
conditions. For example, in Figs. 2 and 4, the increase in pore number 

at the minimum energy radius rm lowers the transmembrane voltage, but 
a subsequent increase in transmembrane voltage is prevented because 
the pores cannot shrink or reseal due to the high pore destruction energy 
barrier (Wd). 

We have shown, in the case of low pore number, that the Smo-
luchowski model produces an artificial smoothing due to the continuous 
nature of the pore density n(r, t). As a result, the analogous Langevin 
model we have presented here produces better qualitative agreement 
with the experimental data. In Fig. 2 of Naumowicz et al. [23], one can 
observe two characteristic frequencies of voltage oscillations. The high 
magnitude, low frequency oscillations are observed in both the Smo-
luchowski and Langevin simulations, but the low magnitude, high fre-
quency oscillations are only seen in the Langevin simulations (Fig. 5). If 
our model is correct, the low magnitude, high frequency oscillations are 

Fig. 4. (Langevin model) Current-Clamp Electroporation (j = 1 mA m− 2). (Left) Transmembrane Voltage response and Exp. data from Naumowicz et al. [23] 
reproduced using the Engauge Digitizer Software [33]. (Middle) Average Pore Radius over time. (Right) Radii of 3 selected pores over time. 
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Fig. 5. Comparison of current through pores according to Langevin and Smo-
luchowski equations. 

Fig. 6. (Smoluchowski model) Current-Clamp Electroporation (j = 1 mA m− 2). 
(Top) Transmembrane Voltage response and Exp. data from Naumowicz et al. 
[23] reproduced using the Engauge Digitizer Software [33]. (Bottom) Number 
of Pores as a function of time. 
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due to stochastic pore fluctuations while the high magnitude, low fre-
quency oscillations are due to either a negative feedback mechanism, or 
a mechanism involving pore opening and closing. 

To determine which of the two mechanisms is responsible, the bi-
layers can be imaged using optical single channel recordings. For the 
pore opening and closing mechanism, the local energy minimum stays 
within the range rm = [1 nm 1.1 nm] throughout the simualtion, 
meaning the most pores observed should have similar radii. According 
to the conductance model, a pore of raidus 1 nm should have a 
conductance of 411 pS, which is consistent with the mean pore 
conductance in Melikov et al. [4]. In contrast, the average pore size is 
variable for the negative feedback mechanism (Fig. 5), meaning that 
pores of different sizes should be observed. 

Another important property of pores is their mean lifetime or 
resealing time. The pore resealing time constant is given by [14,16] 

τ ≈
(r* − rm)

2

D

(
Wd

kT

)− 3
2

e
Wd
kT . (20) 

Since the steric repulsion energy and edge energy dominate the pore 
energy landscape near r = rm, the corresponding parameters (B, b, γ) 
largely determine the value of the pore destruction energy barrier (Wd). 
Many different combinations of the parameters (B, b, γ, D) can produce 
the same value for τ. Therefore, although we cannot be certain about the 
values of the parameters (B, b, γ, D), we can be somewhat confident 
about the value of τ. Using Eq. (20), we computed a value of τ ≈ 2.3ms at 
0 V and τ ≈ 66ms at 0.3 V for the simulation in Fig. 6. These values are 
similar to pore lifetimes measured experimentally using planar lipid 
bilayers [3,4]. Note that electropore lifetimes reported in molecular 
dynamics simulations and experiments with GUVs are in the nanosec-
onds range [35,36], while cells remain permeable for minutes [36]. 

Note that the parameters (a, β, D, γ, B, b) largely depend on mem-
brane composition (in this case a 3:7 M ratio of phosphatidylcholine and 
cholesterol [23]). Different membranes will likely require different 
parameter values. It should also be emphasized that the two parameter 
sets we have chosen here are not necessarily the only ones which pro-
duce a good fit with the data, and a better fit could have been achieved 
by doing an extensive parametric search. However, such a globally 
optimal fit would likely not give any more useful information, and it is 
not clear if the corresponding optimal parameters would be any closer to 
the “true” parameters than the ones we have chosen. For example, 
consider the value for the diffusion coefficient we have chosen for the 
simulation in Figs. 2-5 (D = 10− 18). It was necessary to pick such a low 
value to slow down the pore growth rate and properly fit the data. It is 
possible that the “true” value is much higher, but using such values 
produces a poor fit with the data because of limitations in the model. 
Other authors have introduced more sophisticated pore growth models 
which involve viscous and viscoelastic effects [37,38]. It may be 
necessary to use such models in the future to uncover the “true” 
parameter values. 
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